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Information Security

Needs Trends

=⇒ Cryptographic algorithms evolve, and must be implemented securely.
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Cryptography Is Pervasive
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Information Leakage: ..................Extracting RSA Keys
Seminal CRYPTO’96 paper: 6612 citations, till June 2023

1 1 1 0 1 1 1 01 1 1 0 1 ? ? ?k̂ =

if clocks match
then ? = 1

k =

clone victim

=⇒ Modern cryptographic implementation is now constant-time.
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Information Leakage: ..................Extracting DES Keys
Seminal CRYPTO’99 paper: 10351 citations, till June 2023

=⇒ Modern cryptographic implementation should be protected against SCAs.
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Information Leakage: ........................Device Analysis

Side-channel attacks against ECDH implementation 1.

=⇒ Modern cryptographic implementation should be protected against SCAs.

1Genkin et al. ECDH key-extraction via low-bandwidth electromagnetic attacks on PCs. CT-RSA 2016.
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Information Leakage: ........................Device Analysis

=⇒ Information leakage through power consumption, radiated electromagnetic
field, clock frequency, etc.
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Recent side-channel analyses ...........From the remote!

Logo Vuln. ID Description

CVE-2020-8694
CVE-2020-8694

With PLATYPUS, we present novel software-based power side-channel attacks on Intel
server, desktop and laptop CPUs. We exploit the unprivileged access to the Intel RAPL
interface exposing the processor’s power consumption to infer data and extract crypto-
graphic keys.

CVE-2022-23823
Hertzbleed is a new family of side-channel attacks: frequency side channels. In the worst
case, these attacks can allow an attacker to extract cryptographic keys from remote servers
that were previously believed to be secure.

CVE-2019-11090

They are practical. A local adversary can recover the ECDSA key from Intel fTPM in 4-20
minutes depending on the access level. We even show that these attacks can be performed
remotely on fast networks, by recovering the authentication key of a virtual private network
(VPN) server in 5 hours.

CVE-2019-15809
CVE-2019-13627
CVE-2019-13627
CVE-2019-13629
CVE-2019-14318

This page describes our discovery of a group of side-channel vulnerabilities in implemen-
tations of ECDSA in programmable smart cards and cryptographic software libraries. Our
attack allows for practical recovery of the long-term private key.

CVE-2020-0549
We present CacheOut, a new speculative execution attack that is capable of leaking data
from Intel CPUs across many security boundaries.
SGAxe is an evolution of CacheOut, specifically targeting SGX enclaves.
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https://platypusattack.com/
https://www.hertzbleed.com/
https://tpm.fail/
https://minerva.crocs.fi.muni.cz/
https://sgaxe.com/


Principle

We are always “insecure” : it’s a matter of time

The question is not whether you are secure or not,

but: how much are you (in)secure?
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In Practice
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Masking as a Countermeasure
Example of Boolean Masking (BM) in G = Z2n

sharing function

X(1) ∈ G

leakage function

Y
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q ∈ RD(1)

leakage function leakage function
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Y
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q ∈ RD(0)
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...
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i=0 X
(i) = X(T,K)
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Masking as a Countermeasure
Example of Boolean Masking (BM) in G = Z2n

sharing function
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Construction of Secure Components

Security models

probing model

robust probing model (extended for physical effects)

Designs and proof

follow a bottom-up design strategy

composition strategy:
• (S)NI: (Strong) Non-Interference
• PINI: Probe Isolating Non-Interference
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Construction of Secure Components

Security verification

manual proof

automated verification: maskVerif, SILVER, IronMask, etc

automated generation of components: GHPC (Generic Hardware Private Circuits)

Security evaluation

leakage assessment/detection

attack-based evaluation
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Security Certifications and Standards

International standards

CC: Common Criteria: for information technology security evaluation

ISO/IEC 19790: security requirements for a cryptographic module

ISO/IEC 17825: specifies the non-invasive attack mitigation test metrics

FIPS-140-2 & FIPS-140-3: security requirements for cryptographic module (US)

etc.
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Security Evaluation

Attacker’s perspective

Devising the best attack:

Optimizing success rate

In various contexts:
• Supervised
• Unsupervised

Depending on the scale of
measurement

Depending on the apriori
knowledge on the Target Of
Evaluation (TOE)

Defender’s perspective

Normative “Vulnerability Assessment”.
Quotations, in terms of various factors:

Elapsed time

Expertise

Knowledge of TOE

Window of Opportunity

Equipment

(ISO/IEC 15408)
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https://www.commoncriteriaportal.org/


In Theory

Concrete Side-Channel Evaluation Masking The Conjecture Perspectives Demo Outline References

How does an SCA work

Sbox

Key chunk kı

Plaintext pa

ya = Sbox (pa, kı)

la

la

Model
Pr (Y | L)

0 1 . . .
Y

0 1 . . .

K

lb
lc

‚k

Successful attack i� ‚k = kı

Loïc Masure A Nearly Tight Proof of Duc et al.’s Conjectured Security Bound for Masked Implementations 5 / 25
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In Theory

Concrete Side-Channel Evaluation Masking The Conjecture Perspectives Demo Outline References

How does an SCA work

Sbox

Key chunk kı

Plaintext pc

yc = Sbox (pc , kı)
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From Scores to Metrics

Concrete Side-Channel Evaluation Masking The Conjecture Perspectives Demo Outline References

From scores to Metrics

If, the adversary gets: Sensitive computation unpredictable
SCA not more powerful than cryptanalysis
Device fully secure

If, the adversary gets: Exact prediction of the sensitive computation
Success rate of 100% with one trace
Device not secure at all

In general, the adversary gets: How does this translate into
SCA security metrics ?

Loïc Masure A Nearly Tight Proof of Duc et al.’s Conjectured Security Bound for Masked Implementations 6 / 25
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Concrete SCA Metric: Success Rate (SR)

Concrete Side-Channel Evaluation Masking The Conjecture Perspectives Demo Outline References

Concrete SCA Metrics: the Success Rate (SR)

1 Na(—)
0

—
1

Na (log scale)

SR
(N

a)

SR: probability to succeed the attack within Na queries to the target
Secured device with prob. Ø 1 ≠ —, =∆ refresh secret every Na(—) use 3

Naive est. of Na(—) is expensive: complexity depends on Na(—) itself 7

Loïc Masure A Nearly Tight Proof of Duc et al.’s Conjectured Security Bound for Masked Implementations 7 / 25
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Concrete SCA Metric: Success Rate (SR)

Concrete Side-Channel Evaluation Masking The Conjecture Perspectives Demo Outline References

Circumventing the Drawbacks of the Success Rate (SR)

Can we find surrogate metrics characterizing Na(—) ?

CPA 1

Using correlation coe�.

Na(—) ¥ f (—)
fl2

Easy to estimate fl 3

Only for univariate, linear 7

General case 2

Using the Mutual Information (MI),

Na(—) Ø f (—)
MI (Y;L)

Mutual Information (MI)
generalizes fl 3

MI hard to estimate 7

1Mangard, Oswald, and Popp, Power analysis attacks - revealing the secrets of smart cards
2Chérisey et al., “Best Information is Most Successful: Mutual Information and Success Rate in

Side-Channel Analysis”
Loïc Masure A Nearly Tight Proof of Duc et al.’s Conjectured Security Bound for Masked Implementations 8 / 25
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Theoretical Problem

number of queries. Section IV derives Mrs. Gerber’s lemma
for min-entropy, first for two summands in any finite Abelian
group, then extends it to the general case of d+1 summands.
Section V concludes and gives some perspectives.

II. PRELIMINARIES AND NOTATIONS

A. Framework and Notations
Let K be the secret key and T be a public variable (usually

plaintext or ciphertext) known to the attacker. It is assumed
that T is independent of K, and K is uniformly distributed
over an Abelian group G of order M . The cryptographic algo-
rithm operates on K and T to compute a sensitive variable X ,
which takes values in the same group G and is determined by
K and T , in such a way that X is also uniformly distributed
over G.

In a masking scheme of order d, the sensitive variable X is
randomly split into d + 1 shares X0, X1, . . . , Xd and cryp-
tographic operations are performed on each share separately.
Thus, X = X0 � X1 � · · · � Xd, where each share Xi is
a uniformly distributed random variable over G and � is the
group operation in G. For this group operation, we let  g
denote the opposite of g 2 G. A typical example is “Boolean
masking”, for which � ⌘  is the bitwise XOR operation.

During computation, shares X = (X0, X1, . . . , Xd) are
leaking through some side channel. Noisy “traces,” denoted
by Y = (Y0, Y1, . . . , Yd), are measured by the attacker,
where Y is the output of a memoryless side channel with
input X . Since masking shares are drawn uniformly and
independently, both X and Y are i.i.d. sequences. The attacker
measures m traces Y m = (Y1, Y2, . . . , Ym) corresponding to
the i.i.d. text sequence Tm = (T1, T2, . . . , Tm), then exploits
her knowledge of Y m and Tm to guess the secret key K̂.
Again, since the side-channel is memoryless, both Xm and
Y m are i.i.d. sequences.

Let Ps = P(K = K̂) be the probability of success of the
attack upon observing Tm and Y m. In theory, maximum
success is obtained by the MAP (maximum a posteriori
probability) rule with success probability denoted by Ps =
Ps(K|Y m, Tm). The whole process is illustrated in Fig. 1.

Crypto Masking Side-channel Attack
Xm XmK Y m K̂

Tm Tm

Fig. 1. Side-channel analysis as a (unintended) “communication” channel.

B. Rényi’s ↵-Entropy and Arimoto’s Conditional ↵-Entropy
Assume that either 0 < ↵ < 1 or 1 < ↵ < +1 (the limiting

values 0, 1, +1 can be obtained by taking limits). We consider
probability distributions P, Q with a dominating measure µ,
with respect to which they follow densities denoted by the
corresponding lower-case letters p, q. We follow the notations
of [15] in the following

Definition 1 (Rényi ↵-Entropy and ↵-Divergence):

H↵(P ) = ↵
1�↵ log kpk↵ (1)

D↵(PkQ) = 1
↵�1 loghpkqi↵↵ (2)

with the special notation:

kpk↵ =
�Z

|p|↵dµ
�1/↵

(3)

hpkqi↵ =
�Z

p↵q1�↵dµ
�1/↵

. (4)

The usual Shannon entropy and Kullback-Leibler divergence
are recovered by letting ↵! 1. The ↵-entropy is nonincreas-
ing in ↵ and achieves its min-entropy H1 at the limit ↵ = 1:

Definition 2 (Min-Entropy): For a probability distribution P
over a finite alphabet, the min-entropy is

H1(P ) = � log(max p). (5)

Many different definitions of conditional ↵-entropy
H↵(X|Y ) were proposed in the literature. We use Arimoto’s
definition, which is argued to be the most promising one [8]:

Definition 3 (Arimoto’s Conditional ↵-Entropy [2]): The
conditional ↵-entropy of X given Y is defined as

H↵(X|Y ) =
↵

1� ↵
log EY kpX|Y k↵. (6)

Assuming X takes values in a finite alphabet, the conditional
min-entropy can be obtained by letting ↵!1 in H↵(X|Y ):

Definition 4 (Conditional Min-Entropy [24]):

H1(X|Y ) = � log(EY max
x

pX|Y ) = � log Ps(X|Y ) (7)

where Ps(X|Y ) is the maximum average probability of suc-
cess in estimating X having observed Y , by the MAP rule.

C. Sibson’s ↵-Information and Liu et al.’s Conditional Version

Again, several different definitions of ↵-information
I↵(X; Y ) have been proposed, and Sibson’s ↵-information is
perhaps the most appropriate one because it satisfies several
useful properties that other definitions do not [25].

Definition 5 (Sibson’s ↵-Information [22], [25]):

I↵(X; Y ) = min
QY

D↵(PXY kPX ⇥QY ) (8)

= ↵
↵�1 log EY hpX|Y kpXi↵. (9)

Definition 6 (Max-Information [11, Thm. 4]): Assuming
X, Y are discrete random variables, one has

I1(X; Y ) = log
X

y

sup
x:pX(x)>0

pY |X(y|x) dµY . (10)

Max-information is also studied in [12] as maximal leakage.
Again, there are many different proposals for conditional

↵-information. We use the following definition which seems
most appropriate in the context of side-channel analysis [15]:

Definition 7 (Conditional ↵-Information [15]):

I↵(X; Y |Z) = min
QY Z

D↵(PXY ZkPX|ZQY Z) (11)

= ↵
↵�1 log EY ZhpX|Y ZkpX|Zi↵. (12)

compute sensitive values X ∼ U(M) in an Abelian group G of order M = |G|, which
depends on some secret K;

secret sharing computation: X is split into d + 1 random shares Xi ∼ U(M):
X = X0 ⊕ X1 ⊕ · · · ⊕ Xd in G with group operation ⊕;
this is a dth-order masking countermeasure against noisy leakages Y0, . . . , Yd,
where the side channel X=(X0,X1, . . . ,Xd) 7−→ Y=(Y0, Y1, . . . , Yd) is memoryless;
the adversary performs Na measurements to achieve a given success rate (SR) β;
defender’s (worst case) problem: Evaluate the minimum number of measurements
Na(β) that can achieve the best possible performance (SR), i.e., probability of
success β = Ps(K|Ym) given by the MAP rule.

18 / 27 July 11, 2023 W. Cheng, S. Guilley & O. Rioul All You Ever Wanted to Know About Side-Channel Attacks and Protections



Theoretical Problem

number of queries. Section IV derives Mrs. Gerber’s lemma
for min-entropy, first for two summands in any finite Abelian
group, then extends it to the general case of d+1 summands.
Section V concludes and gives some perspectives.

II. PRELIMINARIES AND NOTATIONS

A. Framework and Notations
Let K be the secret key and T be a public variable (usually

plaintext or ciphertext) known to the attacker. It is assumed
that T is independent of K, and K is uniformly distributed
over an Abelian group G of order M . The cryptographic algo-
rithm operates on K and T to compute a sensitive variable X ,
which takes values in the same group G and is determined by
K and T , in such a way that X is also uniformly distributed
over G.

In a masking scheme of order d, the sensitive variable X is
randomly split into d + 1 shares X0, X1, . . . , Xd and cryp-
tographic operations are performed on each share separately.
Thus, X = X0 � X1 � · · · � Xd, where each share Xi is
a uniformly distributed random variable over G and � is the
group operation in G. For this group operation, we let  g
denote the opposite of g 2 G. A typical example is “Boolean
masking”, for which � ⌘  is the bitwise XOR operation.

During computation, shares X = (X0, X1, . . . , Xd) are
leaking through some side channel. Noisy “traces,” denoted
by Y = (Y0, Y1, . . . , Yd), are measured by the attacker,
where Y is the output of a memoryless side channel with
input X . Since masking shares are drawn uniformly and
independently, both X and Y are i.i.d. sequences. The attacker
measures m traces Y m = (Y1, Y2, . . . , Ym) corresponding to
the i.i.d. text sequence Tm = (T1, T2, . . . , Tm), then exploits
her knowledge of Y m and Tm to guess the secret key K̂.
Again, since the side-channel is memoryless, both Xm and
Y m are i.i.d. sequences.

Let Ps = P(K = K̂) be the probability of success of the
attack upon observing Tm and Y m. In theory, maximum
success is obtained by the MAP (maximum a posteriori
probability) rule with success probability denoted by Ps =
Ps(K|Y m, Tm). The whole process is illustrated in Fig. 1.

Crypto Masking Side-channel Attack
Xm XmK Y m K̂

Tm Tm

Fig. 1. Side-channel analysis as a (unintended) “communication” channel.

B. Rényi’s ↵-Entropy and Arimoto’s Conditional ↵-Entropy
Assume that either 0 < ↵ < 1 or 1 < ↵ < +1 (the limiting

values 0, 1, +1 can be obtained by taking limits). We consider
probability distributions P, Q with a dominating measure µ,
with respect to which they follow densities denoted by the
corresponding lower-case letters p, q. We follow the notations
of [15] in the following

Definition 1 (Rényi ↵-Entropy and ↵-Divergence):

H↵(P ) = ↵
1�↵ log kpk↵ (1)

D↵(PkQ) = 1
↵�1 loghpkqi↵↵ (2)

with the special notation:

kpk↵ =
�Z

|p|↵dµ
�1/↵

(3)

hpkqi↵ =
�Z

p↵q1�↵dµ
�1/↵

. (4)

The usual Shannon entropy and Kullback-Leibler divergence
are recovered by letting ↵! 1. The ↵-entropy is nonincreas-
ing in ↵ and achieves its min-entropy H1 at the limit ↵ = 1:

Definition 2 (Min-Entropy): For a probability distribution P
over a finite alphabet, the min-entropy is

H1(P ) = � log(max p). (5)

Many different definitions of conditional ↵-entropy
H↵(X|Y ) were proposed in the literature. We use Arimoto’s
definition, which is argued to be the most promising one [8]:

Definition 3 (Arimoto’s Conditional ↵-Entropy [2]): The
conditional ↵-entropy of X given Y is defined as

H↵(X|Y ) =
↵

1� ↵
log EY kpX|Y k↵. (6)

Assuming X takes values in a finite alphabet, the conditional
min-entropy can be obtained by letting ↵!1 in H↵(X|Y ):

Definition 4 (Conditional Min-Entropy [24]):

H1(X|Y ) = � log(EY max
x

pX|Y ) = � log Ps(X|Y ) (7)

where Ps(X|Y ) is the maximum average probability of suc-
cess in estimating X having observed Y , by the MAP rule.

C. Sibson’s ↵-Information and Liu et al.’s Conditional Version

Again, several different definitions of ↵-information
I↵(X; Y ) have been proposed, and Sibson’s ↵-information is
perhaps the most appropriate one because it satisfies several
useful properties that other definitions do not [25].

Definition 5 (Sibson’s ↵-Information [22], [25]):

I↵(X; Y ) = min
QY

D↵(PXY kPX ⇥QY ) (8)

= ↵
↵�1 log EY hpX|Y kpXi↵. (9)

Definition 6 (Max-Information [11, Thm. 4]): Assuming
X, Y are discrete random variables, one has

I1(X; Y ) = log
X

y

sup
x:pX(x)>0

pY |X(y|x) dµY . (10)

Max-information is also studied in [12] as maximal leakage.
Again, there are many different proposals for conditional

↵-information. We use the following definition which seems
most appropriate in the context of side-channel analysis [15]:

Definition 7 (Conditional ↵-Information [15]):

I↵(X; Y |Z) = min
QY Z

D↵(PXY ZkPX|ZQY Z) (11)

= ↵
↵�1 log EY ZhpX|Y ZkpX|Zi↵. (12)

compute sensitive values X ∼ U(M) in an Abelian group G of order M = |G|, which
depends on some secret K;
secret sharing computation: X is split into d + 1 random shares Xi ∼ U(M):
X = X0 ⊕ X1 ⊕ · · · ⊕ Xd in G with group operation ⊕;

this is a dth-order masking countermeasure against noisy leakages Y0, . . . , Yd,
where the side channel X=(X0,X1, . . . ,Xd) 7−→ Y=(Y0, Y1, . . . , Yd) is memoryless;
the adversary performs Na measurements to achieve a given success rate (SR) β;
defender’s (worst case) problem: Evaluate the minimum number of measurements
Na(β) that can achieve the best possible performance (SR), i.e., probability of
success β = Ps(K|Ym) given by the MAP rule.
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number of queries. Section IV derives Mrs. Gerber’s lemma
for min-entropy, first for two summands in any finite Abelian
group, then extends it to the general case of d+1 summands.
Section V concludes and gives some perspectives.

II. PRELIMINARIES AND NOTATIONS

A. Framework and Notations
Let K be the secret key and T be a public variable (usually

plaintext or ciphertext) known to the attacker. It is assumed
that T is independent of K, and K is uniformly distributed
over an Abelian group G of order M . The cryptographic algo-
rithm operates on K and T to compute a sensitive variable X ,
which takes values in the same group G and is determined by
K and T , in such a way that X is also uniformly distributed
over G.

In a masking scheme of order d, the sensitive variable X is
randomly split into d + 1 shares X0, X1, . . . , Xd and cryp-
tographic operations are performed on each share separately.
Thus, X = X0 � X1 � · · · � Xd, where each share Xi is
a uniformly distributed random variable over G and � is the
group operation in G. For this group operation, we let  g
denote the opposite of g 2 G. A typical example is “Boolean
masking”, for which � ⌘  is the bitwise XOR operation.

During computation, shares X = (X0, X1, . . . , Xd) are
leaking through some side channel. Noisy “traces,” denoted
by Y = (Y0, Y1, . . . , Yd), are measured by the attacker,
where Y is the output of a memoryless side channel with
input X . Since masking shares are drawn uniformly and
independently, both X and Y are i.i.d. sequences. The attacker
measures m traces Y m = (Y1, Y2, . . . , Ym) corresponding to
the i.i.d. text sequence Tm = (T1, T2, . . . , Tm), then exploits
her knowledge of Y m and Tm to guess the secret key K̂.
Again, since the side-channel is memoryless, both Xm and
Y m are i.i.d. sequences.

Let Ps = P(K = K̂) be the probability of success of the
attack upon observing Tm and Y m. In theory, maximum
success is obtained by the MAP (maximum a posteriori
probability) rule with success probability denoted by Ps =
Ps(K|Y m, Tm). The whole process is illustrated in Fig. 1.

Crypto Masking Side-channel Attack
Xm XmK Y m K̂

Tm Tm

Fig. 1. Side-channel analysis as a (unintended) “communication” channel.
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with respect to which they follow densities denoted by the
corresponding lower-case letters p, q. We follow the notations
of [15] in the following
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kpk↵ =
�Z

|p|↵dµ
�1/↵

(3)

hpkqi↵ =
�Z

p↵q1�↵dµ
�1/↵

. (4)
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are recovered by letting ↵! 1. The ↵-entropy is nonincreas-
ing in ↵ and achieves its min-entropy H1 at the limit ↵ = 1:

Definition 2 (Min-Entropy): For a probability distribution P
over a finite alphabet, the min-entropy is

H1(P ) = � log(max p). (5)

Many different definitions of conditional ↵-entropy
H↵(X|Y ) were proposed in the literature. We use Arimoto’s
definition, which is argued to be the most promising one [8]:
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1� ↵
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x
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where Ps(X|Y ) is the maximum average probability of suc-
cess in estimating X having observed Y , by the MAP rule.

C. Sibson’s ↵-Information and Liu et al.’s Conditional Version

Again, several different definitions of ↵-information
I↵(X; Y ) have been proposed, and Sibson’s ↵-information is
perhaps the most appropriate one because it satisfies several
useful properties that other definitions do not [25].

Definition 5 (Sibson’s ↵-Information [22], [25]):

I↵(X; Y ) = min
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D↵(PXY kPX ⇥QY ) (8)
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↵�1 log EY hpX|Y kpXi↵. (9)

Definition 6 (Max-Information [11, Thm. 4]): Assuming
X, Y are discrete random variables, one has

I1(X; Y ) = log
X

y

sup
x:pX(x)>0

pY |X(y|x) dµY . (10)

Max-information is also studied in [12] as maximal leakage.
Again, there are many different proposals for conditional

↵-information. We use the following definition which seems
most appropriate in the context of side-channel analysis [15]:

Definition 7 (Conditional ↵-Information [15]):

I↵(X; Y |Z) = min
QY Z

D↵(PXY ZkPX|ZQY Z) (11)

= ↵
↵�1 log EY ZhpX|Y ZkpX|Zi↵. (12)

compute sensitive values X ∼ U(M) in an Abelian group G of order M = |G|, which
depends on some secret K;
secret sharing computation: X is split into d + 1 random shares Xi ∼ U(M):
X = X0 ⊕ X1 ⊕ · · · ⊕ Xd in G with group operation ⊕;
this is a dth-order masking countermeasure against noisy leakages Y0, . . . , Yd,
where the side channel X=(X0,X1, . . . ,Xd) 7−→ Y=(Y0, Y1, . . . , Yd) is memoryless;

the adversary performs Na measurements to achieve a given success rate (SR) β;
defender’s (worst case) problem: Evaluate the minimum number of measurements
Na(β) that can achieve the best possible performance (SR), i.e., probability of
success β = Ps(K|Ym) given by the MAP rule.
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K and T , in such a way that X is also uniformly distributed
over G.
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tographic operations are performed on each share separately.
Thus, X = X0 � X1 � · · · � Xd, where each share Xi is
a uniformly distributed random variable over G and � is the
group operation in G. For this group operation, we let  g
denote the opposite of g 2 G. A typical example is “Boolean
masking”, for which � ⌘  is the bitwise XOR operation.
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independently, both X and Y are i.i.d. sequences. The attacker
measures m traces Y m = (Y1, Y2, . . . , Ym) corresponding to
the i.i.d. text sequence Tm = (T1, T2, . . . , Tm), then exploits
her knowledge of Y m and Tm to guess the secret key K̂.
Again, since the side-channel is memoryless, both Xm and
Y m are i.i.d. sequences.

Let Ps = P(K = K̂) be the probability of success of the
attack upon observing Tm and Y m. In theory, maximum
success is obtained by the MAP (maximum a posteriori
probability) rule with success probability denoted by Ps =
Ps(K|Y m, Tm). The whole process is illustrated in Fig. 1.
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Assume that either 0 < ↵ < 1 or 1 < ↵ < +1 (the limiting

values 0, 1, +1 can be obtained by taking limits). We consider
probability distributions P, Q with a dominating measure µ,
with respect to which they follow densities denoted by the
corresponding lower-case letters p, q. We follow the notations
of [15] in the following

Definition 1 (Rényi ↵-Entropy and ↵-Divergence):

H↵(P ) = ↵
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with the special notation:
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(3)
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. (4)

The usual Shannon entropy and Kullback-Leibler divergence
are recovered by letting ↵! 1. The ↵-entropy is nonincreas-
ing in ↵ and achieves its min-entropy H1 at the limit ↵ = 1:

Definition 2 (Min-Entropy): For a probability distribution P
over a finite alphabet, the min-entropy is

H1(P ) = � log(max p). (5)

Many different definitions of conditional ↵-entropy
H↵(X|Y ) were proposed in the literature. We use Arimoto’s
definition, which is argued to be the most promising one [8]:

Definition 3 (Arimoto’s Conditional ↵-Entropy [2]): The
conditional ↵-entropy of X given Y is defined as

H↵(X|Y ) =
↵

1� ↵
log EY kpX|Y k↵. (6)

Assuming X takes values in a finite alphabet, the conditional
min-entropy can be obtained by letting ↵!1 in H↵(X|Y ):

Definition 4 (Conditional Min-Entropy [24]):

H1(X|Y ) = � log(EY max
x

pX|Y ) = � log Ps(X|Y ) (7)

where Ps(X|Y ) is the maximum average probability of suc-
cess in estimating X having observed Y , by the MAP rule.

C. Sibson’s ↵-Information and Liu et al.’s Conditional Version

Again, several different definitions of ↵-information
I↵(X; Y ) have been proposed, and Sibson’s ↵-information is
perhaps the most appropriate one because it satisfies several
useful properties that other definitions do not [25].

Definition 5 (Sibson’s ↵-Information [22], [25]):

I↵(X; Y ) = min
QY

D↵(PXY kPX ⇥QY ) (8)

= ↵
↵�1 log EY hpX|Y kpXi↵. (9)

Definition 6 (Max-Information [11, Thm. 4]): Assuming
X, Y are discrete random variables, one has

I1(X; Y ) = log
X

y

sup
x:pX(x)>0

pY |X(y|x) dµY . (10)

Max-information is also studied in [12] as maximal leakage.
Again, there are many different proposals for conditional

↵-information. We use the following definition which seems
most appropriate in the context of side-channel analysis [15]:

Definition 7 (Conditional ↵-Information [15]):

I↵(X; Y |Z) = min
QY Z

D↵(PXY ZkPX|ZQY Z) (11)

= ↵
↵�1 log EY ZhpX|Y ZkpX|Zi↵. (12)

compute sensitive values X ∼ U(M) in an Abelian group G of order M = |G|, which
depends on some secret K;
secret sharing computation: X is split into d + 1 random shares Xi ∼ U(M):
X = X0 ⊕ X1 ⊕ · · · ⊕ Xd in G with group operation ⊕;
this is a dth-order masking countermeasure against noisy leakages Y0, . . . , Yd,
where the side channel X=(X0,X1, . . . ,Xd) 7−→ Y=(Y0, Y1, . . . , Yd) is memoryless;
the adversary performs Na measurements to achieve a given success rate (SR) β;

defender’s (worst case) problem: Evaluate the minimum number of measurements
Na(β) that can achieve the best possible performance (SR), i.e., probability of
success β = Ps(K|Ym) given by the MAP rule.
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K and T , in such a way that X is also uniformly distributed
over G.
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tographic operations are performed on each share separately.
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group operation in G. For this group operation, we let  g
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masking”, for which � ⌘  is the bitwise XOR operation.
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leaking through some side channel. Noisy “traces,” denoted
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her knowledge of Y m and Tm to guess the secret key K̂.
Again, since the side-channel is memoryless, both Xm and
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Let Ps = P(K = K̂) be the probability of success of the
attack upon observing Tm and Y m. In theory, maximum
success is obtained by the MAP (maximum a posteriori
probability) rule with success probability denoted by Ps =
Ps(K|Y m, Tm). The whole process is illustrated in Fig. 1.
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values 0, 1, +1 can be obtained by taking limits). We consider
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The usual Shannon entropy and Kullback-Leibler divergence
are recovered by letting ↵! 1. The ↵-entropy is nonincreas-
ing in ↵ and achieves its min-entropy H1 at the limit ↵ = 1:

Definition 2 (Min-Entropy): For a probability distribution P
over a finite alphabet, the min-entropy is

H1(P ) = � log(max p). (5)

Many different definitions of conditional ↵-entropy
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definition, which is argued to be the most promising one [8]:

Definition 3 (Arimoto’s Conditional ↵-Entropy [2]): The
conditional ↵-entropy of X given Y is defined as
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↵

1� ↵
log EY kpX|Y k↵. (6)

Assuming X takes values in a finite alphabet, the conditional
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pX|Y ) = � log Ps(X|Y ) (7)

where Ps(X|Y ) is the maximum average probability of suc-
cess in estimating X having observed Y , by the MAP rule.

C. Sibson’s ↵-Information and Liu et al.’s Conditional Version

Again, several different definitions of ↵-information
I↵(X; Y ) have been proposed, and Sibson’s ↵-information is
perhaps the most appropriate one because it satisfies several
useful properties that other definitions do not [25].

Definition 5 (Sibson’s ↵-Information [22], [25]):

I↵(X; Y ) = min
QY

D↵(PXY kPX ⇥QY ) (8)

= ↵
↵�1 log EY hpX|Y kpXi↵. (9)

Definition 6 (Max-Information [11, Thm. 4]): Assuming
X, Y are discrete random variables, one has

I1(X; Y ) = log
X

y

sup
x:pX(x)>0

pY |X(y|x) dµY . (10)

Max-information is also studied in [12] as maximal leakage.
Again, there are many different proposals for conditional

↵-information. We use the following definition which seems
most appropriate in the context of side-channel analysis [15]:

Definition 7 (Conditional ↵-Information [15]):

I↵(X; Y |Z) = min
QY Z

D↵(PXY ZkPX|ZQY Z) (11)

= ↵
↵�1 log EY ZhpX|Y ZkpX|Zi↵. (12)

compute sensitive values X ∼ U(M) in an Abelian group G of order M = |G|, which
depends on some secret K;
secret sharing computation: X is split into d + 1 random shares Xi ∼ U(M):
X = X0 ⊕ X1 ⊕ · · · ⊕ Xd in G with group operation ⊕;
this is a dth-order masking countermeasure against noisy leakages Y0, . . . , Yd,
where the side channel X=(X0,X1, . . . ,Xd) 7−→ Y=(Y0, Y1, . . . , Yd) is memoryless;
the adversary performs Na measurements to achieve a given success rate (SR) β;
defender’s (worst case) problem: Evaluate the minimum number of measurements
Na(β) that can achieve the best possible performance (SR), i.e., probability of
success β = Ps(K|Ym) given by the MAP rule.
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Various Metrics ∆(X,Y)

how noisy is the leakage Y w.r.t. X ∼ U(M) ?
i.e., how close on average is pX|Y from pX = u (uniform = 1

M ) ?

Information Theory:
KL divergence D(p∥u) = logM − H(p)
mutual information:
I(X; Y) = EYD(pX|Y∥pX) = D(pXY∥pX ⊗ pY)

Rényi divergence Dα(p∥u) = logM − Hα(p)
Sibson’s α-information:
Iα(X; Y) = minqY Dα(pXY∥pX ⊗ qY)

“Rényi” α-information:
I′α(X; Y) = Dα(pXY∥pX ⊗ pY) ⩾ Iα(X; Y)

19 / 27 July 11, 2023 W. Cheng, S. Guilley & O. Rioul All You Ever Wanted to Know About Side-Channel Attacks and Protections



Various Metrics ∆(X,Y)

how noisy is the leakage Y w.r.t. X ∼ U(M) ?

i.e., how close on average is pX|Y from pX = u (uniform = 1
M ) ?

Statistics:

total variation distance ∆1(p,u) =
1
2∥p − u∥1 = maxT |P(T)− U(T)|

− indistinguishability: no adversary can distinguish between p and u
with advantage better than ∆1.
− statistical distance: ∆1(X; Y) = EY∆1(pX|Y ,pX) = ∆1(pXY ,pX ⊗ pY)

Euclidean bias ∆2(p,u) = ∥p − u∥2
2

− mean-squared distance ∆2(X; Y) = EY∆2(pX|Y ,pX)
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number of queries. Section IV derives Mrs. Gerber’s lemma
for min-entropy, first for two summands in any finite Abelian
group, then extends it to the general case of d+1 summands.
Section V concludes and gives some perspectives.

II. PRELIMINARIES AND NOTATIONS

A. Framework and Notations
Let K be the secret key and T be a public variable (usually

plaintext or ciphertext) known to the attacker. It is assumed
that T is independent of K, and K is uniformly distributed
over an Abelian group G of order M . The cryptographic algo-
rithm operates on K and T to compute a sensitive variable X ,
which takes values in the same group G and is determined by
K and T , in such a way that X is also uniformly distributed
over G.

In a masking scheme of order d, the sensitive variable X is
randomly split into d + 1 shares X0, X1, . . . , Xd and cryp-
tographic operations are performed on each share separately.
Thus, X = X0 � X1 � · · · � Xd, where each share Xi is
a uniformly distributed random variable over G and � is the
group operation in G. For this group operation, we let  g
denote the opposite of g 2 G. A typical example is “Boolean
masking”, for which � ⌘  is the bitwise XOR operation.

During computation, shares X = (X0, X1, . . . , Xd) are
leaking through some side channel. Noisy “traces,” denoted
by Y = (Y0, Y1, . . . , Yd), are measured by the attacker,
where Y is the output of a memoryless side channel with
input X . Since masking shares are drawn uniformly and
independently, both X and Y are i.i.d. sequences. The attacker
measures m traces Y m = (Y1, Y2, . . . , Ym) corresponding to
the i.i.d. text sequence Tm = (T1, T2, . . . , Tm), then exploits
her knowledge of Y m and Tm to guess the secret key K̂.
Again, since the side-channel is memoryless, both Xm and
Y m are i.i.d. sequences.

Let Ps = P(K = K̂) be the probability of success of the
attack upon observing Tm and Y m. In theory, maximum
success is obtained by the MAP (maximum a posteriori
probability) rule with success probability denoted by Ps =
Ps(K|Y m, Tm). The whole process is illustrated in Fig. 1.
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Fig. 1. Side-channel analysis as a (unintended) “communication” channel.
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values 0, 1, +1 can be obtained by taking limits). We consider
probability distributions P, Q with a dominating measure µ,
with respect to which they follow densities denoted by the
corresponding lower-case letters p, q. We follow the notations
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Definition 1 (Rényi ↵-Entropy and ↵-Divergence):
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The usual Shannon entropy and Kullback-Leibler divergence
are recovered by letting ↵! 1. The ↵-entropy is nonincreas-
ing in ↵ and achieves its min-entropy H1 at the limit ↵ = 1:

Definition 2 (Min-Entropy): For a probability distribution P
over a finite alphabet, the min-entropy is

H1(P ) = � log(max p). (5)

Many different definitions of conditional ↵-entropy
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definition, which is argued to be the most promising one [8]:

Definition 3 (Arimoto’s Conditional ↵-Entropy [2]): The
conditional ↵-entropy of X given Y is defined as

H↵(X|Y ) =
↵

1� ↵
log EY kpX|Y k↵. (6)

Assuming X takes values in a finite alphabet, the conditional
min-entropy can be obtained by letting ↵!1 in H↵(X|Y ):

Definition 4 (Conditional Min-Entropy [24]):

H1(X|Y ) = � log(EY max
x

pX|Y ) = � log Ps(X|Y ) (7)

where Ps(X|Y ) is the maximum average probability of suc-
cess in estimating X having observed Y , by the MAP rule.

C. Sibson’s ↵-Information and Liu et al.’s Conditional Version

Again, several different definitions of ↵-information
I↵(X; Y ) have been proposed, and Sibson’s ↵-information is
perhaps the most appropriate one because it satisfies several
useful properties that other definitions do not [25].

Definition 5 (Sibson’s ↵-Information [22], [25]):

I↵(X; Y ) = min
QY

D↵(PXY kPX ⇥QY ) (8)

= ↵
↵�1 log EY hpX|Y kpXi↵. (9)

Definition 6 (Max-Information [11, Thm. 4]): Assuming
X, Y are discrete random variables, one has

I1(X; Y ) = log
X

y

sup
x:pX(x)>0

pY |X(y|x) dµY . (10)

Max-information is also studied in [12] as maximal leakage.
Again, there are many different proposals for conditional

↵-information. We use the following definition which seems
most appropriate in the context of side-channel analysis [15]:

Definition 7 (Conditional ↵-Information [15]):

I↵(X; Y |Z) = min
QY Z

D↵(PXY ZkPX|ZQY Z) (11)

= ↵
↵�1 log EY ZhpX|Y ZkpX|Zi↵. (12)

worst case security (Kerckhoffs’s principle): all the implementation details are
assumed known to the attacker who can even profile (estimate the statistical
distribution of the leakage);
with d + 1 shares, this requires the characterization of high-order and multivariate
distributions Y, which is too expensive for high noise;
to mitigate this difficulty, concrete evaluation practice is on

∆(Xi; Yi) for each share i = 0, . . . ,d

instead of ∆(X;Y) = ∆(X0 ⊕ · · · ⊕ Xd;Y). In this way, security bounds can be
derived without having to mount the complete attack.
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Duc+al Evaluation Bound

“Making Masking Security Proofs Concrete,” Duc, Faust, Standaert, Eurocrypt 2015.

Theorem (Duc+al, revisited)

Let ϵ(Xi; Yi) = ϵi for each share i = 0, . . . ,d. Then

Na(β) ⩾
log 1−1/M

1−β

− log(1 − ( M√
2 log e

)d+1
∏d

i=0

√
I(Xi; Yi))

For high noise, the denominator is ≈ ( M√
2 log e

)d+1
∏d

i=0 I(Xi; Yi)
1/2 which is too large even

for moderate SNR.
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Masure+al Evaluation Bound

“A Nearly Tight Proof of Duc et al.’s Conjectured Security Bound for Masked Implementations,” Masure,

Rioul, & Standaert CARDIS 2022.

Theorem (Masure+al)

Na(β) ⩾
logM − (1 − β) log(M − 1)− h(β)

log(1 + M
2

∏d
i=0

2
log e I(Xi; Yi))

for high noise, the denominator is ≈ M( 2
log e)

d
∏d

i=0 I(Xi; Yi) which is much improved

compared to the previous one ( M√
2 log e

)d+1
∏d

i=0 I(Xi; Yi)
1/2

independently, Ito et al. 1 derived the same expression with M − 1 instead of M/2.
Their proof uses Pinsker inequality and the Fourier transform on G = Zn

2 (Parseval).
still gives loose security guarantees compared to actual attacks (factor 256)

1Ito et al. On the success rate of side-channel attacks on masked implementations. CCS 2022.
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Liu+al Evaluation Bound

“Improved Alpha-Information Bounds for Higher-Order Masked Cryptographic Implementations,” Liu,

Béguinot, Cheng, Guilley, Masure, Rioul, Standaert, ITW 2023 (St Malo, France)

Theorem (Liu+al)

Na(β) ⩾
logM + log(β2 + (1 − β)2(M − 1)−1)

log
(
1 +

∏d
i=0(exp I′2(Xi; Yi)− 1)

)

for high noise, the denominator is ≈ ( 1
log e)

d
∏d

i=0 I′2(Xi; Yi) where the alphabet size M
no longer appears: improved by a large factor compared to the previous one
M( 2

log e)
d
∏d

i=0 I(Xi; Yi) although I′2(Xi; Yi) ⩾ I(Xi; Yi).

23 / 27 July 11, 2023 W. Cheng, S. Guilley & O. Rioul All You Ever Wanted to Know About Side-Channel Attacks and Protections



Béguinot+al Evaluation Bound

“Removing the Field Size Loss from Duc et al.’s Conjectured Bound for Masked Encodings,” Béguinot,

Cheng, Guilley, Liu, Masure, Rioul, Standaert, COSADE 2023 (Munich, Germany)

Based on Mrs. Gerber’s Lemma, with the condition that there exists at least one
I(Xi; Yi) < log(2):

Theorem (Béguinot+al)

For alphabet size M = 2n,

Na(β) ⩾
logM − (1 − β) log(M − 1)− h(β)

φ
(∏

i φ
−1(I(Xi; Yi))

)

for high noise (all I(Xi; Yi) < log(2)), since φ(x) ≈ ( log e
2 )x2 as x → 0, the

denominator is ≈ ( 1
log e)

d
∏d

i=0 I(Xi; Yi), which is again improved compared to the

previous one ( 1
log e)

d
∏d

i=0 I′2(Xi; Yi).
however, the numerator d(β∥1/M) is less than the previous one d2(β∥1/M).
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Maximal Leakage Evaluation Bound

“Maximal Leakage of Masked Implementations Using MGL for Min-Entropy,” Béguinot, Liu, Rioul, Cheng,

Guilley, ISIT 2023 (Taibei, China)

Based of a new “Mrs. Gerber’s Lemma” for I∞,

Theorem

For any Abelian group G,
Na(β) ⩾

log(Mβ)

log
(
1 + c

∏d
i=0 exp(I∞(Xi; Yi))− 1

)

for high noise and even d, the denominator is ≈ ( 1
log e)

d
∏d

i=0 I∞(Xi; Yi);

the numerator d∞(β∥1/M) improves upon the preceding ones d2(β∥1/M) and
d(β∥1/M).
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Why Do We Care?

Practical Example:

Concrete Side-Channel Evaluation Masking The Conjecture Perspectives Demo Outline References

Illustration on Simulations

Bitslice masking: |Y| = 2, Leakage model: Li = hw(Yi) + Noise(0, ‡2)

Figure: Success rate of concrete bit recoveries and MI-based upper bounds.
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Conclusions

Crypto-Analysis is mathematical

Side-Channel Analysis is physical

Thanks to information theory, we manage to provide formal guarantees

The key to certification is security-by-design

A book to be published in Q1 2024 at Springer/Nature:
• mathematical foundation of security guarantees
• derivation of optimal attacks
• easy evaluations for side-channel resilience.
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All You Ever Wanted to Know About

Side-Channel Attacks and Protections

Thank you!
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